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We consider error estimates for interpolation by a special class of compactly
supported radial basis functions. These functions consist of a univariate polynomial
within their support and are of minimal degree depending on space dimension
and smoothness. Their associated “native” Hilbert spaces are shown to be norm-
equivalent to Sobolev spaces. Thus we can derive approximation orders for
functions from Sobolev spaces which are comparable to those of thin-plate-spline
interpolation. Finally, we investigate the numerical stability of the interpolation
process.  © 1998 Academic Press

1. INTERPOLATION BY COMPACTLY SUPPORTED RADIAL
BASIS FUNCTIONS

For a given function /'€ C(R“) the radial basis function interpolant s, on
aset X={x,, .., xy} SR of distinct points is given by

s(x) =} o, ®(x —x;), (1)

where @: R?— R is a fixed, usually radial function @(x) = ¢(||x|,) and the
coefficients a,, ..., &5 are determined by the interpolation conditions

s(x)=f(x;), 1<j<N. (2)

A large number of centers x; on the one hand or a large number of evalua-
tions of the interpolating function (1) on the other hand makes it obviously
desirable to have a compactly supported basis function @ of the simplest
possible form.
But the most popular @’s are not compactly supported. They often do
not even allow one to form the interpolant as a pure “radial” sum (1), so
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polynomials up to a certain degree are added. As we are interested in a
special class of basis functions @ which allow interpolants s, of the form
(1), we skip the details and restrict ourselves to positive definite functions,
but refer the reader to the overview articles [ 2, 5, 11, 13, 14] for the more
general setting.

DEerFINITION 1.1. A continuous function @: RY— R is said to be positive
definite iff for all Ne N, all sets of pairwise distinct centers X = {x, ..., Xy}
<= R and all vectors a € RM\{0} the quadratic form

;0 P(X;— X)
1

M =
I DM =

Jj=1 k

is positive. A univariate even function ¢: R — R is called positive definite
on R? which we abbreviate by ¢ e PD,, if the function @(x)=¢(|x],),
x e R, is positive definite.

This definition ensures that the interpolation problem (2) with s, from
(1) is uniquely solvable, because the interpolation matrices Ay 4=
(D(x;,—x,)) are positive definite.

Note that it suffices to determine the univariate function ¢ only for non-
negative arguments because ¢ is even. Thus from now on we shall only
consider univariate functions ¢: R., — R.

One advantage of the classical radial basis functions like Gaussians, thin-
plate-splines, or multiquadratics is their simple representation, which holds
for every space dimension 4, i.e., the same univariate function ¢ can be used
as a basis function @(x)=¢(|x|[,) on every R As it is a simple conse-
quence of a theorem of Schoenberg [15] that a compactly supported
univariate function ¢: R_, —» R cannot be positive definite on every R? we
have to accept the dependence of ¢ on the space dimension d as soon as
we work with a compact support. But this is actually no real disadvantage.

Now we introduce the operator I and its inverse D for r >0 by

(1)) =" t90)

(D))=~ 9()

to define the class of functions we shall investigate in the next sections. We

start with the truncated power function ¢,(r)=(1—r)", and then define

¢d,k:Ik¢Ld/2J+k+l (3)
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where |_x_| denotes the largest integer less than or equal to x. In [17] the
following theorem is proved and recursion formulae are given.

THEOREM 1.2.  The functions ¢, . induce positive definite functions on R?
of the form

_par(r), 0<r<li
(/54,/((")—{0, 1

with a univariate polynomial p,, of degree | d/2 1+ 3k +1. They possess
continuous derivatives up to order 2k. They are of minimal degree for given
space dimension d and smoothness 2k and are up to a constant factor
uniquely determined by this setting.

Thus these functions are the natural candidates for interpolation by com-
pactly supported radial basis functions and a further investigation of their
properties is necessary.

Though in [17] one kind of recursion formula is given to compute ¢,
we want to add here a simpler formula, which can be proved by induction.

THEOREM 1.3.  Within its support [0,1] the function ¢, , has the
representation
1+ 2k

Da (1) = Z dj(',l}c r!
j=0

with I=1d22 |+ k+1. The coefficients can be computed recursively for
0<s<k—1:

1
dﬁ-,’3>=(—1)"<.>, 0<,j<!
J
[+ 2s dj(ll
dg{).\‘+1: Z ]4:2’ d(ll,).\‘+1:0> 320
Jj=0
d,_,,
di;’hs—%”, 520, 2<j<I+25+2.

Furthermore, precisely the first k odd coefficients d\'} vanish.

For convenience, we list the simplest cases in Table I, where = denotes
equality up to a positive constant factor.
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TABLE 1

Table of Functions

d=1 $ro(r)=(1—r), c’
r/n.l(r):(l—')’+ (3r+1) C?
Gro(r)=(1—7r)> (8 +5r+1) ct

d=3 b30(r)=(1—7r)% C’
¢31(r)=(1=r)% (4r+1) c?
¢32(r)=(1—7)° (3572 + 18r +3) ct
¢sa(r)=(1—r)% (323 +25r2+8r +1) ct

d=5 bs.o(r)=(1—7)% C’
ps(r)=(1—=r)% (5r+1) c?
¢s.2(r)=(1—7r)", (167 +Tr+1) ct

2. ERROR ESTIMATES

Knowing that interpolation is always possible, it is necessary to look for
the behaviour of the interpolation error f —s, (pointwise or in a given
norm) as a function of the data density. Therefore the space of functions f
to be approximated (or interpolated) has to be specified and a “measure”
for the data density has to be introduced. Naturally, the function space will
depend on the basis function @ and we will denote it by %,. The density-
“measure” for a set of centers X = {x, .., x5} =2 =R will be of the form

h=sup min |[x—x;|[, (4)
xeQ 1<i<N

if we concentrate on a compact subset Q of R satisfying a uniform interior
cone condition.

There are several papers studying this kind of approximation problem by
introducing the right space, often called “native” space, and then giving
approximation orders depending on 4. We cite for example [4, 8,9, 11, 19].

Here, we follow [19] because it serves our purposes best and it will
come out that the native spaces for our functions are norm-equivalent to
Sobolev spaces (see Theorem 2.1). We start with a positive definite and
integrable function @ and define its Fourier transform by

() = (27) "> j ®(x) e dx.
Rd

Then the native space %, consists of all generalized functions f: R — R
which can be recovered via

A

Sx)=21) 2 [ fle) e do,
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where [ is a function satisfying

JN® e Ly(R),
The norm on %, is given by

113 = 2m) 2 [ U;(ww))' o,

Equipped with this norm, which obviously comes from an inner product,
Ry becomes a Hilbert space. From [19] it follows that if @ has an
asymptotic behaviour like

D(w)=0(lo]; ). ol > . (5)
then for every f e %4, and every sufficiently small s </, the error estimate

If =l o)< Ch*=" | fll o (6)

is valid.

While upper bounds like (5) on the Fourier transform yield bounds for
the approximation order, the corresponding lower bounds for the Fourier
transform imply upper bounds for the stability of the interpolation process.
Thus it is of enormous importance for the native space, the numerical
stability, and the approximation order to know the precise asymptotic
behaviour of the Fourier transform of the underlying radial basis function.

Now, let us assume we have already proved the following relations for
the compactly supported radial functions @, ,(x)=d¢, ([lx[,), x€R?% of
the last section

Dy (@) <Cy o7 ol,>0, (7)
and

Dy l(@)=C o777 olly>r, (8)
with certain constants 0 < C, < C, and r,. Actually, relation (8) does not
hold in the case k=0 if the space dimension is d=1 or d=2, but this is
no serious restriction. If we also know that the Fourier transform @, , is
always positive we can find other constants K, and K, with

Ki(1+ [@]3) =+ 712 < by (@) S Ky(1+ o]3) =241 (9)

for all w e RY and this yields
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THEOREM 2.1. Let ¢4, denote the compactly supported radial basis func-
tion in PD, n C*(R) of minimal degree and let k=1 for d=1, 2. The native
space Ry, belonging to ¢, ;. then coincides with Sobolev space H S(RY) with
s=d/2+k+1/2 and the native space norm is equivalent to the Sobolev
norm. The Fourier transform satisfies (9).

We remark in passing that the usual Sobolev embedding theorem for this
case yields

A, <= CHRY).

The approximation order also results immediately from (6) and from the
relations (7) and (8). We state it only if k> 1 for d=1, 2, even if the native
space version is also valid in these cases.

THEOREM 2.2. Let s=d2+k+1/2 and k=1 for d=1,2. For every
fe H (R and every compact Q < R? satisfying a uniform interior cone
condition the interpolant s, y on X ={x,, .., x5} € Q satisfies the estimate

Hf_sﬁ XHLI(Q)gc HfHHA‘([RzI/) herz (10)

with h defined as in (4) sufficiently small. Thus interpolation with ¢,
provides at least approximation order k +1/2.

Note that this approximation order is comparable to that of thin-plate-
spline or polyharmonic spline interpolation if a comparably smooth basis
function is chosen.

As a simple example we apply Theorem 2.2 to the C*-function ¢; ,(r) =
(4r +1)(r—1)% in R* and get approximation order 3,2 for functions from
H*(R?) which equals the approximation order of interpolation with cubics
o(r)=r

Before we prove the estimates (7) and (8) in the next section we state
one more consequence. We already know that ¢, . is in C*(R), but now
(7) and (8) lead also to

COROLLARY 2.3. The induced functions @, (x) =, (|x,), x € RY are
in C*(RY).
3. ASYMPTOTIC BEHAVIOUR OF THE FOURIER TRANSFORM

The right tool to handle compactly supported functions in this context
is the Fourier transform. A famous theorem of Bochner shows that positive
definite and integrable functions are characterized by a nonnegative,
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nonvanishing Fourier transform. We introduce the operator %,, which
actually operates on univariate functions by

(%45)(”)5@()6):(271)*4/2[ q&(w)eﬂ‘xTw do

Rd

o0
—pd=2)p fo $(1) 12T ) (rt) dt

with &(x)=¢(r), r=||x||,, and the Bessel function of the first kind

0 (_1)m (2/2)v+2m
J(z)= ), T
wZom! I(v+m+1)
Thus Z,¢ is the radial function representing the d-variate Fourier trans-
form of the radial function @(x)=¢(|x|,).
It was first observed in [18] that the operators I and D of the last
section influence the Fourier transform in the following way,

%IZ%HL %D:g{if2’ (11)

whenever the operations are defined. So the d-variate Fourier transform of
a function RYsx— ¢(||x||,) coincides with the (d—2)-variate Fourier
transform of the function RY~2?3x+— (I¢)(||x|,) and a similar relation
holds for ¢ and D¢. This was used to construct the functions of minimal
degree in [17] and will now be used to investigate their Fourier trans-
forms Z;¢, .

We start by setting /= d/2_ |+ k+ 1 and get

=7’d¢d, W(r)= %Ik‘ﬁl(") =T $i(1)

= ) P ()

Now we have to distinguish between odd and even space dimension d. We
first investigate the odd dimensional case. Therefore we set d=2n+ 1,
m=k+n, and assume m to be greater than zero, which excludes only the
CP-function in R. On account of /=m + 1 we get

Farirbaar) =12 [ (r= )" R () dr
0

z%m+l¢m+l(}’)' (12)

We first turn to lower bounds for this Fourier transform.
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LemMMA 3.1. For m >0 there exists a constant C(m) such that for r >0
the lower bound

e972m+1¢m+1(}/’) 2 C(m) T 1I:‘Im+ 1/2(}’/2) +Jil+3/2(r/2)]
is valid.

Proof. We use formula (2.7) in [7] with a =m + 1/2 to get

fo (r_[)m+1 tm+l/2']m—1/2(t) dt

=+ 1) [ (r— 0y R, () d
[(m+1) F2m+2) Im +3/2)
T(3m+3)

S (QmA2MA),2mA),  (2m+2),2j+2m+1
L (om+ 6, (Gm+8)), Jt jramtl meiee

23)11 + 3/2rm +1

=(m+1)

(r/2)

after one integration by parts. As each factor on the right-hand side is
positive we can neglect all but the first two terms of the sum to gain a
lower bound of the stated form. |

Since the zeros of different Bessel functions do not coincide the bound is
strictly positive. The next step for lower bounds is to bound the sum of
Bessel functions from below.

Lemma 3.2. For me N there exists an r,, such that for all r >r,,

1

Ji1+1/2(”)+‘];2n+3/2(”)>;

holds.

Proof. As the index of the involved Bessel functions is half an odd
integer, the Bessel functions can be represented by a finite sum of the form

2\ |
Jm+1/2(r) = <> Z aj,n?.f},m(r) rij’ (13)

nr) =

where a; ,, = (—1)""* (m+ j)Y/(j!{(m—j)!1 27) for 0< j<m and f; , is alter-
natively the function sin(- —7zm/2) or cos(- —zm/2) if j is even or odd,
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respectively (cf. [16]). We assume «; ,, to be zero in all other cases for
convenience. A simple squaring yields

Jr2n+1/2 ) < Om )+ z )Bj,m(r)r_j>

Jj=1

with uniform bounded coefficients f; ,(r). If we now add two neighbouring
squares we gain

2m+2
Ji1+1/2(r)+‘]3n+3/2( ) < Om( )+f%,m+l(r)+ Z yj,m(r)rj>9

Jj=1

where the coefficients y, () are uniformly bounded again. If we finally take
into account that /3 ,.(r) + /5 ., (r) =sin*(r — am/2) + cos*(r —nm/2) =1
we only have to choose r,, large enough to get the stated inequality. ||

Note that we have given a lower bound in Lemma 3.2, whereas an upper
bound of this form is not surprising, since it is well known that each square
is bounded by C/r. We also want to make the reader aware of the fact that
formula (13) allows an explicit representation of Z,¢,, for odd space
dimension d, but we skip the details, since we are mainly interested in the
general behaviour.

We will summarize the previous results in

ProposiTION 3.3, For odd space dimension d=2n+ 1 and given smooth-
ness 2k with n+k=>=1 there exist constants c¢,=c,(d, k) and roy=ry(d, k)
such that for all r =r, the inequality

Ty i(r)=cr =21
is valid.
We now turn to upper bounds still in the odd dimensional case. We set

fo(r)=1—cos(r) and for m>0

Sl1)=Fo# 0= [ 1ol0) f sl =1) . (14)

By calculating the Laplace transform & of f,, and of the integral appearing
in Z¢, . with d=2n+1 and m=n+k we get (cf. [1])

1
_rm+1(1 _l_r2)m+1

(Zf,)(r)
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and

S Bl77
1% <f0 (s—t)" L 12y (1) dl> (r) = (1 42y
with
Cml(m 1)1 22

m =
NG

Note, that both functions are of convolution type which simplifies the
calculation of their Laplace transform. Finally we get

B

[ =ty ) di= B, () (15)
0
Thus we have done the main work for our next proposition.

PROPOSITION 3.4. The Fourier transform of ¢, , for odd d=2n+1
possesses the upper bound

Ty i (r) <cyr 721

for all r>0 with a constant c, depending only on d and k.

Proof. This follows easily by induction from the equality F,¢, (r) =
B, r—*"2f (r) with m =k + n, which is a consequence of (15). |

Thus the asymptotic behaviour of the Fourier transform of the com-
pactly supported radial basis functions of minimal degree is completely
known in case of odd dimensional spaces and we have to turn to even
dimensional cases. We use the results for odd dimension in a similar way
as we have gained the upper bounds there. Now we set d =2n and, again,
m =k + n; then we have m > 1 because n is at least 1. The d-variate Fourier
transform of ¢, , now has the form

Fapair)=r 1 [ =y e, () (16)
0
We again follow [1] to introduce

golr)=[ (o) di
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and g,,(r)= g * f,,_1(r), where f,, is the function defined in (14). We state
some facts about the g,,’s.

LeMMA 3.5. (1) For m=k+nwe have #,¢,, (r)=B,, _r " 'g,(r).
(2) go(t)>0 for t>0.
(3) There exists a t, such that 1/2 <gy(t) <3/2 holds for all t > t,.

Proof. The first assertion can again be proved by comparing the
Laplace transforms of g,, and of the integral in (16) (cf. [ 1]). The second
assertion is an inequality originating from Cooke [3], whereas the last
assertion follows from 58" Jo(t)dt=1 (cf. [6]). 1

We are now able to prove the main result of this section.

THEOREM 3.6. Let ¢, ;. denote the compactly supported radial basis func-
tions of minimal degree, positive definite on R and in C**. For every space
dimension d and every k e N there exists a constant ¢, depending only on d
and k such that for all ¥ =0 the Fourier transform of ¢, satisfies

%qﬁd’ W(r) < Czrfdizki L

If d=3 for k=0 or arbitrary otherwise then there exist constants ¢, and r,
depending on d and k such that for r =r, the lower bound

er 4 2k71</1¢d ()

is also valid.

Proof. The odd dimensional case is treated in Propositions 3.3 and 3.4,
so we only have to consider the even dimensional case d =2n. Let C denote
a generic constant and m =n+ k. From Lemma 3.5 we get g,(¢) < C for all
t > 0. This yields with Proposition 3.4

g.(r) f Son_1(0) gor—t)dt<cjrt’”*‘dt=Cr

0

and this is valid for all »>0 and all m e N, which includes the case k =0
even for d=2. We now turn to the lower bounds and assume m > 1. As
fon_1 and g, are positive and f,, ,(r) = Cr™ ="' for r >r, and g,(r) > 1/2 for
r=r, we have

gm( ) J fm—l gOr_t)dt Crma
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where 0 <r, <r/2 <r,<r have to be chosen properly such that r, >r, and
r—r,>=r, which completes the proof. ||

4. CONDITION NUMBERS

In this final section we shall investigate the behaviour of the condition
number of the interpolation process. We can make use of the results of the
previous section if we consider the norm of the inverse of the interpolation
matrix. The results concerning the norm of the interpolation matrix are of
a more general type and can be applied to all kinds of positive definite and
compactly supported basis functions.

Knowing the lower bound (8) standard techniques dating back to
Narcowich and Ward [10] (cf. also [12]) yield

THeOREM 4.1.  Let ¢,(r)=(1—r)', andlet ¢, ,(r)=1"¢,(r)ePD, N C*
be the function of minimal degree with |=|d/2 ]+k+1>1. Let X={x,, ..,
xy} SR? be a set of centers with separation distance 2qy=min,_
x;—x;11,>0 and denote the interpolation matrix with Ay bk = (D x
(Ix;=x,12)); ;- The norm of the inverse of the interpolation matrix then
satisfies

l4x), a=0lgx* "), gy —0. (17)

Thus the norm of the inverse of the interpolation matrix grows only
polynomially in terms of the separation distance, if the latter tends to zero.

We now turn to the norm of the interpolation matrix itself. Here, we deal
with a more general setting. Given a continuous function @: R? —» R with
support in the unit ball B;(0) :={xe R |x|,<1} and a set of scattered
and pairwise distinct centers X = {x, .., x,} we are interested in the norm
of the matrix 4, 4= (P(x;—x,;)). Without loss of generality we restrict
ourselves to sets of centers X with separation distance ¢, < 1/2, otherwise
the matrix A4y , is of diagonal form. To motivate our next theorem let us
assume that @ has infinity norm 1. Let us further assume that the centers
are given on a regular grid with width 2¢,=1/(N"?—1) and that there are
at least two centers in each direction of the grid. Then the Gerschgorin
theorem yields immediately

I4x ol <N<qy“.

A general theorem has to cover this asymptotic behaviour.
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Lemma 4.2. If @:R?— R is a continuous function with support B,(0)
and max |®(x)| <1, if X={x,, .. xy} SR is further a set with pairwise
distinct points and qy<1/2, then for all x e R?

% |B(x —x,)| <4% . (18)

j=1

Proof. The proof uses a counting argument of Narcowich and Ward
[10]. More precisely we set for fixed x e R?

Sp(x)=1x;€ X: gk <|lx —x; [, <qx(k+1)}.

Then we have according to [10]
e card[ So(x)] <1,
o card[S,(x)]<3%“ " for k>1.

If x; € S;(x) for a k with kgy>1, so &(x —x;) =0. Thus we have

17 k<1/QX

B(x—x,)| <
B(x—x) {0’ o

As X is covered by the union of S,(x) we derive

N

Y P(x—x)I < Y, card[ Si(x)] xpo, 174, 11(K)

j=1 k=0
Ll/{[XJ
<1+ Z 3dkd71

k=1

SL+31/gx 1'<47(1/g)",
which completes the proof. ||

Of course this estimate is rather inaccurate, but it is sufficient for our
purposes.

THEOREM 4.3. Let @: R — R be positive definite. Further let X, q, and
A=Ay 4 be defined as before. Then

4 d
IAX,¢|2<<>
qdx

is valid.
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Proof. If we use a®+b>>2ab and the previous lemma we get

IA]l> =sup |a" A

N N
<Y 2 oyl o] [@(x;— x|
j=1 k=1
1 N N
<5 Y X100 x)] (ol + o)

(L)
dx

The sup has to be taken over all xe RY with |laf,=1. ||

Thus the condition number of the interpolation matrix using the

piecewise polynomial, positive definite, and compactly supported radial
basis functions of minimal degree can be bounded by

1

10.

cond,(Ay, g, ) < Cqyd=21
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